V = 1133.4 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.13 \times 0.10 \times 0.07 \text{ mm}$ 

9180 measured reflections

4590 independent reflections

4284 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.27 \text{ mm}^{-1}$ 

T = 295 (2) K

 $R_{\rm int} = 0.028$ 

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## [N-(5-Chloro-2-oxidobenzylidene)-L-valinato- $\kappa^3 O, N, O'$ ]diphenyltin(IV)

#### Yan Dong

Department of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China

Correspondence e-mail: dongyanchem@163.com

Received 3 October 2007; accepted 4 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.007 Å: disorder in main residue; R factor = 0.031; wR factor = 0.067; data-to-parameter ratio = 15.9.

The Sn atom of the title compound,  $[Sn(C_6H_5)_2-$ (C12H12CINO3)], is in a distorted SnNC2O2 trigonalbipyramidal geometry and forms five- and six-membered chelate rings with the tridentate ligand. One phenyl group is disordered over two positions with occupancy factors 0.58 (3):0.42 (3).

#### **Related literature**

For related literature, see: Beltran et al. (2003); Dakternieks et al. (1998); Ding et al. (2006); Rivera et al. (2006); Tian et al. (2005, 2006, 2007).



#### **Experimental**

#### Crystal data

 $[Sn(C_6H_5)_2(C_{12}H_{12}CINO_3)]$  $M_r = 526.57$ Monoclinic, P21 a = 9.5105 (11) Åb = 11.3594 (13) Å c = 10.4939 (12) Å  $\beta = 91.305 (2)^{\circ}$ 

#### Data collection

Bruker SMART APEX area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002)  $T_{\min} = 0.852, T_{\max} = 0.916$ 

#### Refinement

| H-atom parameters constrained                              |
|------------------------------------------------------------|
| $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ |
| Absolute structure: Flack (1983),                          |
| with 2135 Friedel pairs                                    |
| Flack parameter: 0.03 (2)                                  |
|                                                            |

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2308).

#### References

Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.

Ding, R.-F., Zhu, J., Zhang, D.-D. & Yin, H.-D. (2006). Acta Cryst. E62, m3158m3159.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Rivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater. 18, 1174-1183.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980-987.

Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 19, 74-80.

Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312-318.

Acta Cryst. (2007). E63, m2689 [doi:10.1107/S1600536807048647]

### [*N*-(5-Chloro-2-oxidobenzylidene)-L-valinato- $\kappa^3 O, N, O'$ ]diphenyltin(IV)

### Y. Dong

#### Comment

The structural chemistry of diorganotin complexes with Schiff bases derived from  $\alpha$ -amino acids receives attention since their antitumour activities and the quadratic nonlinear optical properties (Beltran et al., 2003; Dakternieks et al., 1998; Tian et al., 2005, 2006, 2007; Rivera et al., 2006). The structures of several diorganotin complexes with the Schiff base ligand, [N-(2-oxidohydroxyphenylmethylene)valine, such as [N-(2-oxidophenylmethylene)valinato]dibutyltin(IV), [N-(2-oxidophenylmethylene)valinato]diphenyltin(IV) (Beltran et al., 2003), [*N*-(4-diethylamino-2-oxidophenylmethylene)valinato]diphenyltin(IV) (Rivera et al., 2006). [*N*-(2-oxidophenylmethylene)valinato]di-t-butyltin(IV) (Ding et al., 2006), [N-(5-bromo-2oxidophenylmethylene)valinato]diphenyltin(IV), [N-(3,5-dibromo-2-oxidophenylmethylene)valinato]diphenyltin(IV) and[N-(3,5-dibromo-2-oxidophenylmethylene)valinato]dibutyltin(IV) (Tian et al., 2005, 2006, 2007) have been reported.

The coordination geometry about the tin atom in the title compound, (I), is that of a distorted trigonal bipyramid with two phenyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O2 atom (Fig. 1). The bond length of Sn—O2 was longer than that of Sn—O1 and the bond angle O1—Sn—O2 was 157.87 (11)°. The monodentate mode of coordination of carboxylate is reflected in the disparate C9—O2 and C9—O3 bond lengths of 1.290 (6) and 1.200 (6) Å, respectively. The distances of bonds around the tin atom were comparable to those observed in the diphenyltin complexes mentioned above.

#### **Experimental**

The title compound was synthesized by the reaction of diphenyltin dichloride (0.69 g, 2 mmol) with potassium *N*-(5-chlorosalicylidene)-(*L*)-valinate (0.59 g, 2 mmol) in the presence of  $Et_3N$  (0.20 g, 2 mmol) in 60 ml benzene. The reaction mixture was refluxed for 3 h and filtered. The yellow solid obtained, (I), by removal of solvent under reduce pressure was recrystallized from dichloromethane-petroleum ether (60–90) (1:2, V/V) and crystals of (I) were obtained from chloroform-hexane (1:1, V/V) by slow evaporation at temperature (yield 61%, m.p. 523–524 K).

#### Refinement

One phenyl group (C19–C24) is disordered over two positions; *ipso* atom C19 was refined with full occupancy, while the other atoms were refined in two parts, with site occupancy factors of 0.58 (3) (atoms C20–C24) and 0.42 (3) (atoms C20'–C24'). The phenyl rings were restrained to be planar regular hexagons, with target C==C distances of 1.39 (1) Å. The absolute configuration of the compound (I) was assigned on the basis of the known configuration of the starting reagent, (*L*)-valine. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å and  $U_{iso}(H) = 1.2Ueq(C)$  for aromatic H atoms, C—H = 0.96 Å and  $U_{iso}(H) = 1.5Ueq(C)$  for methyl H atoms, and C—H = 0.98 Å and  $U_{iso}(H) = 1.2Ueq(C)$  for methine H atoms. **Figures** 



Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. For phenyl group C19–C14, the minor disordered component has been omitted for clarity.

### [*N*-(5-Chloro-2-oxidobenzylidene)-*L*-valinato- $\kappa^3 O$ ,*N*,*O*']diphenyltin(IV)

 $F_{000} = 528$ 

 $\theta = 2.6 - 23.6^{\circ}$ 

 $\mu = 1.27 \text{ mm}^{-1}$ 

T = 295 (2) K

Block, yellow

 $0.13 \times 0.10 \times 0.07 \text{ mm}$ 

 $D_{\rm x} = 1.543 \text{ Mg m}^{-3}$ Mo *K* $\alpha$  radiation  $\lambda = 0.71073 \text{ Å}$ 

Cell parameters from 3681 reflections

| Crystal data                                                                                           |
|--------------------------------------------------------------------------------------------------------|
| [Sn(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> (C <sub>12</sub> H <sub>12</sub> ClNO <sub>3</sub> )] |
| $M_r = 526.57$                                                                                         |
| Monoclinic, P2 <sub>1</sub>                                                                            |
| Hall symbol: P 2yb                                                                                     |
| <i>a</i> = 9.5105 (11) Å                                                                               |

a = 9.5105 (11) Å b = 11.3594 (13) Å c = 10.4939 (12) Å  $\beta = 91.305 (2)^{\circ}$   $V = 1133.4 (2) \text{ Å}^{3}$ Z = 2

#### Data collection

| Bruker SMART APEX area-detector diffractometer              | 4590 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 4284 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.028$                  |
| T = 295(2)  K                                               | $\theta_{\text{max}} = 26.5^{\circ}$   |
| $\phi$ and $\omega$ scans                                   | $\theta_{\min} = 1.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2002) | $h = -11 \rightarrow 11$               |
| $T_{\min} = 0.852, T_{\max} = 0.916$                        | $k = -14 \rightarrow 14$               |
| 9180 measured reflections                                   | $l = -12 \rightarrow 13$               |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                  |
|---------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | $w = 1/[\sigma^2(F_o^2) + (0.0252P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |

| $wR(F^2) = 0.067$                                              | $(\Delta/\sigma)_{\text{max}} = 0.001$                |
|----------------------------------------------------------------|-------------------------------------------------------|
| <i>S</i> = 1.02                                                | $\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$ |
| 4590 reflections                                               | $\Delta \rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$  |
| 289 parameters                                                 | Extinction correction: none                           |
| 19 restraints                                                  | Absolute structure: Flack (1983)                      |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.03 (2)                             |

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|------|--------------|--------------|---------------|-------------------------------|-----------|
| Sn1  | 0.70895 (2)  | 0.99509 (4)  | 0.831297 (19) | 0.03600 (8)                   |           |
| Cl1  | 1.13466 (16) | 0.52770 (11) | 0.54971 (14)  | 0.0832 (5)                    |           |
| 01   | 0.8224 (3)   | 0.8460 (3)   | 0.8791 (3)    | 0.0450 (7)                    |           |
| 02   | 0.5607 (3)   | 1.1018 (3)   | 0.7298 (3)    | 0.0493 (7)                    |           |
| O3   | 0.4190 (4)   | 1.1202 (3)   | 0.5617 (4)    | 0.0694 (11)                   |           |
| N1   | 0.6499 (3)   | 0.8924 (3)   | 0.6661 (3)    | 0.0338 (7)                    |           |
| C1   | 0.8890 (4)   | 0.7729 (4)   | 0.8023 (5)    | 0.0398 (11)                   |           |
| C2   | 1.0045 (4)   | 0.7085 (4)   | 0.8506 (4)    | 0.0466 (10)                   |           |
| H2   | 1.0327       | 0.7175       | 0.9355        | 0.056*                        |           |
| C3   | 1.0755 (5)   | 0.6330 (4)   | 0.7744 (5)    | 0.0545 (12)                   |           |
| Н3   | 1.1514       | 0.5905       | 0.8077        | 0.065*                        |           |
| C4   | 1.0353 (5)   | 0.6191 (4)   | 0.6476 (4)    | 0.0494 (11)                   |           |
| C5   | 0.9224 (5)   | 0.6768 (4)   | 0.5986 (4)    | 0.0471 (10)                   |           |
| Н5   | 0.8946       | 0.6643       | 0.5141        | 0.056*                        |           |
| C6   | 0.8465 (4)   | 0.7554 (3)   | 0.6741 (4)    | 0.0362 (8)                    |           |
| C7   | 0.7225 (4)   | 0.8101 (3)   | 0.6175 (4)    | 0.0389 (9)                    |           |
| H7   | 0.6929       | 0.7825       | 0.5379        | 0.047*                        |           |
| C8   | 0.5227 (5)   | 0.9352 (5)   | 0.5940 (5)    | 0.0399 (12)                   |           |
| H8   | 0.5401       | 0.9296       | 0.5025        | 0.048*                        |           |
| C9   | 0.4979 (5)   | 1.0633 (4)   | 0.6278 (5)    | 0.0426 (13)                   |           |
| C10  | 0.3968 (5)   | 0.8528 (5)   | 0.6264 (5)    | 0.0549 (13)                   |           |
| H10  | 0.4284       | 0.7716       | 0.6135        | 0.066*                        |           |
| C11  | 0.3545 (5)   | 0.8629 (5)   | 0.7628 (5)    | 0.0758 (16)                   |           |
| H11A | 0.3239       | 0.9419       | 0.7793        | 0.114*                        |           |

| H11B | 0.4334      | 0.8443      | 0.8178      | 0.114*      |          |
|------|-------------|-------------|-------------|-------------|----------|
| H11C | 0.2791      | 0.8091      | 0.7786      | 0.114*      |          |
| C12  | 0.2732 (6)  | 0.8735 (6)  | 0.5346 (6)  | 0.101 (2)   |          |
| H12A | 0.2016      | 0.8159      | 0.5492      | 0.151*      |          |
| H12B | 0.3044      | 0.8670      | 0.4485      | 0.151*      |          |
| H12C | 0.2357      | 0.9509      | 0.5480      | 0.151*      |          |
| C13  | 0.5895 (3)  | 0.9951 (6)  | 0.9989 (3)  | 0.0409 (7)  |          |
| C14  | 0.5991 (5)  | 0.9052 (4)  | 1.0871 (4)  | 0.0499 (11) |          |
| H14  | 0.6574      | 0.8413      | 1.0718      | 0.060*      |          |
| C15  | 0.5231 (6)  | 0.9088 (5)  | 1.1980 (5)  | 0.0666 (14) |          |
| H15  | 0.5311      | 0.8483      | 1.2575      | 0.080*      |          |
| C16  | 0.4367 (5)  | 1.0019 (8)  | 1.2188 (4)  | 0.0779 (14) |          |
| H16  | 0.3838      | 1.0041      | 1.2921      | 0.094*      |          |
| C17  | 0.4268 (7)  | 1.0916 (6)  | 1.1336 (6)  | 0.090 (2)   |          |
| H17  | 0.3683      | 1.1553      | 1.1494      | 0.108*      |          |
| C18  | 0.5042 (6)  | 1.0885 (5)  | 1.0227 (5)  | 0.0669 (14) |          |
| H18  | 0.4976      | 1.1502      | 0.9647      | 0.080*      |          |
| C19  | 0.8775 (4)  | 1.1131 (4)  | 0.8039 (4)  | 0.0468 (10) |          |
| C20  | 0.849 (3)   | 1.2326 (8)  | 0.7949 (19) | 0.065 (4)   | 0.58 (3) |
| H20  | 0.7547      | 1.2552      | 0.7978      | 0.077*      | 0.58 (3) |
| C21  | 0.948 (3)   | 1.321 (2)   | 0.782 (2)   | 0.089 (6)   | 0.58 (3) |
| H21  | 0.9219      | 1.4001      | 0.7803      | 0.107*      | 0.58 (3) |
| C22  | 1.086 (3)   | 1.288 (2)   | 0.771 (3)   | 0.079 (6)   | 0.58 (3) |
| H22  | 1.1558      | 1.3438      | 0.7581      | 0.094*      | 0.58 (3) |
| C23  | 1.121 (2)   | 1.1703 (19) | 0.7802 (19) | 0.062 (4)   | 0.58 (3) |
| H23  | 1.2145      | 1.1477      | 0.7730      | 0.074*      | 0.58 (3) |
| C24  | 1.0194 (9)  | 1.085 (2)   | 0.800 (2)   | 0.056 (4)   | 0.58 (3) |
| H24  | 1.0471      | 1.0071      | 0.8105      | 0.067*      | 0.58 (3) |
| C20' | 0.846 (4)   | 1.2225 (12) | 0.751 (2)   | 0.065 (4)   | 0.42 (3) |
| H20' | 0.7541      | 1.2456      | 0.7301      | 0.077*      | 0.42 (3) |
| C21' | 0.961 (4)   | 1.294 (3)   | 0.733 (3)   | 0.089 (6)   | 0.42 (3) |
| H21' | 0.9491      | 1.3706      | 0.7025      | 0.107*      | 0.42 (3) |
| C22' | 1.095 (5)   | 1.252 (4)   | 0.760 (4)   | 0.079 (6)   | 0.42 (3) |
| H22' | 1.1710      | 1.2991      | 0.7373      | 0.094*      | 0.42 (3) |
| C23' | 1.124 (3)   | 1.146 (3)   | 0.818 (3)   | 0.062 (4)   | 0.42 (3) |
| H23' | 1.2152      | 1.1251      | 0.8441      | 0.074*      | 0.42 (3) |
| C24' | 1.0109 (14) | 1.071 (3)   | 0.836 (3)   | 0.056 (4)   | 0.42 (3) |
| H24' | 1.0238      | 0.9957      | 0.8681      | 0.067*      | 0.42 (3) |
|      |             |             |             |             |          |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | U <sup>22</sup> | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|--------------|-----------------|--------------|--------------|--------------|---------------|
| Sn1 | 0.03674 (12) | 0.03590 (12)    | 0.03530 (12) | 0.00080 (17) | -0.00019 (8) | -0.00332 (18) |
| Cl1 | 0.1032 (10)  | 0.0702 (12)     | 0.0778 (8)   | 0.0400 (8)   | 0.0352 (7)   | -0.0003 (6)   |
| 01  | 0.0523 (17)  | 0.0489 (17)     | 0.0337 (15)  | 0.0148 (14)  | -0.0012 (13) | -0.0038 (13)  |
| O2  | 0.0505 (17)  | 0.0423 (16)     | 0.0547 (19)  | 0.0069 (13)  | -0.0089 (15) | 0.0054 (14)   |
| O3  | 0.068 (2)    | 0.062 (2)       | 0.076 (3)    | 0.0115 (19)  | -0.021 (2)   | 0.018 (2)     |
| N1  | 0.0320 (17)  | 0.0361 (17)     | 0.0331 (17)  | -0.0016 (14) | -0.0021 (14) | 0.0023 (14)   |

| C1           | 0.033 (2)        | 0.040 (2)   | 0.046 (3)   | -0.0046 (19) | 0.0032 (19)  | 0.0066 (19)  |
|--------------|------------------|-------------|-------------|--------------|--------------|--------------|
| C2           | 0.047 (2)        | 0.048 (2)   | 0.045 (2)   | 0.004 (2)    | -0.004 (2)   | 0.004 (2)    |
| C3           | 0.049 (3)        | 0.046 (3)   | 0.069 (3)   | 0.011 (2)    | 0.011 (2)    | 0.010 (3)    |
| C4           | 0.052 (3)        | 0.035 (2)   | 0.062 (3)   | 0.0059 (19)  | 0.021 (2)    | -0.002 (2)   |
| C5           | 0.058 (3)        | 0.041 (2)   | 0.043 (2)   | 0.003 (2)    | 0.010(2)     | -0.0047 (18) |
| C6           | 0.036 (2)        | 0.032 (2)   | 0.041 (2)   | -0.0061 (16) | 0.0053 (16)  | -0.0026 (17) |
| C7           | 0.043 (2)        | 0.040 (2)   | 0.033 (2)   | -0.0080 (18) | -0.0002 (16) | -0.0005 (17) |
| C8           | 0.029 (2)        | 0.055 (3)   | 0.035 (2)   | -0.0020 (19) | -0.0040 (18) | 0.009(2)     |
| C9           | 0.045 (3)        | 0.044 (3)   | 0.039 (3)   | 0.004 (2)    | 0.003 (2)    | 0.013 (2)    |
| C10          | 0.036 (2)        | 0.063 (3)   | 0.065 (3)   | -0.012 (2)   | -0.011 (2)   | 0.007 (3)    |
| C11          | 0.055 (3)        | 0.090 (4)   | 0.083 (4)   | -0.025 (3)   | 0.015 (3)    | 0.008 (3)    |
| C12          | 0.060 (4)        | 0.121 (6)   | 0.119 (5)   | -0.040 (4)   | -0.042 (4)   | 0.039 (4)    |
| C13          | 0.0453 (18)      | 0.0398 (17) | 0.0377 (16) | -0.001 (3)   | 0.0021 (13)  | -0.007 (3)   |
| C14          | 0.053 (3)        | 0.053 (3)   | 0.044 (2)   | 0.007 (2)    | 0.001 (2)    | -0.004 (2)   |
| C15          | 0.076 (4)        | 0.073 (4)   | 0.051 (3)   | 0.001 (3)    | 0.011 (3)    | 0.014 (3)    |
| C16          | 0.082 (3)        | 0.095 (4)   | 0.058 (3)   | 0.010 (5)    | 0.031 (2)    | -0.003 (5)   |
| C17          | 0.100 (5)        | 0.093 (5)   | 0.079 (4)   | 0.043 (4)    | 0.042 (4)    | 0.001 (4)    |
| C18          | 0.085 (4)        | 0.057 (3)   | 0.060 (3)   | 0.028 (3)    | 0.023 (3)    | 0.008 (2)    |
| C19          | 0.048 (3)        | 0.054 (3)   | 0.038 (2)   | -0.017 (2)   | -0.0024 (19) | -0.004 (2)   |
| C20          | 0.052 (4)        | 0.067 (4)   | 0.073 (11)  | -0.025 (4)   | -0.029 (8)   | 0.019 (5)    |
| C21          | 0.091 (7)        | 0.062 (11)  | 0.115 (17)  | -0.037 (8)   | -0.033 (11)  | 0.018 (9)    |
| C22          | 0.076 (6)        | 0.080 (15)  | 0.079 (7)   | -0.042 (10)  | -0.015 (5)   | 0.014 (11)   |
| C23          | 0.054 (4)        | 0.083 (11)  | 0.049 (11)  | -0.015 (5)   | 0.006 (7)    | 0.015 (7)    |
| C24          | 0.049 (3)        | 0.057 (6)   | 0.063 (12)  | -0.008 (3)   | 0.013 (4)    | -0.008 (6)   |
| C20'         | 0.052 (4)        | 0.067 (4)   | 0.073 (11)  | -0.025 (4)   | -0.029 (8)   | 0.019 (5)    |
| C21'         | 0.091 (7)        | 0.062 (11)  | 0.115 (17)  | -0.037 (8)   | -0.033 (11)  | 0.018 (9)    |
| C22'         | 0.076 (6)        | 0.080 (15)  | 0.079 (7)   | -0.042 (10)  | -0.015 (5)   | 0.014 (11)   |
| C23'         | 0.054 (4)        | 0.083 (11)  | 0.049 (11)  | -0.015 (5)   | 0.006 (7)    | 0.015 (7)    |
| C24'         | 0.049 (3)        | 0.057 (6)   | 0.063 (12)  | -0.008 (3)   | 0.013 (4)    | -0.008 (6)   |
| Geometric pa | trameters (Å, °) |             |             |              |              |              |
| Sn1—O1       |                  | 2.064 (3)   | C13–        | C18          | 1.36         | 2 (7)        |
| Sn1—C19      |                  | 2.114 (4)   | C13–        | C14          | 1.37         | 9 (7)        |
| Sn1—C13      |                  | 2.115 (3)   | C14-        | C15          | 1.38         | 4 (6)        |
| Sn1—O2       |                  | 2.127 (3)   | C14-        | -H14         | 0.93         | 00           |
| Sn1—N1       |                  | 2.153 (3)   | C15-        | C16          | 1.36         | 0 (9)        |
| Cl1—C4       |                  | 1.753 (4)   | C15-        | -H15         | 0.93         | 00           |
| O1—C1        |                  | 1.327 (5)   | C16–        | C17          | 1.35         | 7 (9)        |
| O2—C9        |                  | 1.290 (6)   | C16–        | -H16         | 0.93         | 00           |
| O3—C9        |                  | 1.200 (6)   | C17–        | C18          | 1.39         | 2 (7)        |
| N1—C7        |                  | 1.276 (5)   | C17–        | –H17         | 0.93         | 00           |
| N1—C8        |                  | 1.494 (5)   | C18–        | -H18         | 0.93         | 00           |
| C1—C2        |                  | 1.405 (6)   | C19–        | C20          | 1.38         | 8 (8)        |
| C1—C6        |                  | 1.410 (6)   | C19–        | C24          | 1.38         | 8 (8)        |
|              |                  |             |             |              |              |              |

C19—C24'

C19—C20'

C20-C21

С20—Н20

1.363 (6)

0.9300

1.385 (7)

0.9300

C2—C3

С2—Н2

C3—C4

С3—Н3

1.389 (9)

1.391 (9)

1.389 (8)

0.9300

| C4—C5       | 1.350 (6)   | C21—C22       | 1.379 (9)  |
|-------------|-------------|---------------|------------|
| C5—C6       | 1.405 (6)   | C21—H21       | 0.9300     |
| С5—Н5       | 0.9300      | C22—C23       | 1.375 (9)  |
| C6—C7       | 1.449 (6)   | C22—H22       | 0.9300     |
| С7—Н7       | 0.9300      | C23—C24       | 1.387 (8)  |
| C8—C9       | 1.517 (6)   | С23—Н23       | 0.9300     |
| C8—C10      | 1.564 (6)   | C24—H24       | 0.9300     |
| C8—H8       | 0.9800      | C20'—C21'     | 1.389 (10) |
| C10-C11     | 1.500 (7)   | C20'—H20'     | 0.9300     |
| C10—C12     | 1.521 (7)   | C21'—C22'     | 1.383 (10) |
| C10—H10     | 0.9800      | C21'—H21'     | 0.9300     |
| C11—H11A    | 0.9600      | C22'—C23'     | 1.380 (10) |
| C11—H11B    | 0.9600      | C22'—H22'     | 0.9300     |
| C11—H11C    | 0.9600      | C23'—C24'     | 1.387 (9)  |
| C12—H12A    | 0.9600      | C23'—H23'     | 0.9300     |
| C12—H12B    | 0.9600      | C24'—H24'     | 0.9300     |
| C12—H12C    | 0.9600      |               |            |
| O1—Sn1—C19  | 99.17 (14)  | C10-C12-H12C  | 109.5      |
| O1—Sn1—C13  | 94.91 (19)  | H12A—C12—H12C | 109.5      |
| C19—Sn1—C13 | 122.44 (19) | H12B—C12—H12C | 109.5      |
| O1—Sn1—O2   | 157.87 (11) | C18—C13—C14   | 118.9 (4)  |
| C19—Sn1—O2  | 93.82 (14)  | C18—C13—Sn1   | 119.1 (4)  |
| C13—Sn1—O2  | 93.10 (16)  | C14—C13—Sn1   | 122.0 (4)  |
| O1—Sn1—N1   | 82.92 (11)  | C13—C14—C15   | 121.0 (4)  |
| C19—Sn1—N1  | 114.73 (14) | C13—C14—H14   | 119.5      |
| C13—Sn1—N1  | 122.29 (16) | C15—C14—H14   | 119.5      |
| O2—Sn1—N1   | 75.37 (11)  | C16-C15-C14   | 119.1 (5)  |
| C1—O1—Sn1   | 128.3 (3)   | С16—С15—Н15   | 120.5      |
| C9—O2—Sn1   | 120.8 (3)   | C14—C15—H15   | 120.5      |
| C7—N1—C8    | 118.4 (3)   | C17—C16—C15   | 120.8 (4)  |
| C7—N1—Sn1   | 125.8 (3)   | С17—С16—Н16   | 119.6      |
| C8—N1—Sn1   | 115.2 (3)   | C15-C16-H16   | 119.6      |
| O1—C1—C2    | 119.1 (4)   | C16—C17—C18   | 120.1 (5)  |
| O1—C1—C6    | 122.5 (4)   | С16—С17—Н17   | 120.0      |
| C2—C1—C6    | 118.4 (4)   | С18—С17—Н17   | 120.0      |
| C3—C2—C1    | 120.7 (4)   | C13—C18—C17   | 120.1 (5)  |
| С3—С2—Н2    | 119.7       | C13-C18-H18   | 119.9      |
| C1—C2—H2    | 119.7       | C17-C18-H18   | 119.9      |
| C2—C3—C4    | 120.4 (4)   | C20—C19—C24   | 114.5 (15) |
| С2—С3—Н3    | 119.8       | C20—C19—C24'  | 122.0 (18) |
| С4—С3—Н3    | 119.8       | C24—C19—C20'  | 113.4 (17) |
| C5—C4—C3    | 120.7 (4)   | C24'—C19—C20' | 126 (2)    |
| C5—C4—Cl1   | 119.9 (4)   | C20-C19-Sn1   | 118.6 (11) |
| C3—C4—Cl1   | 119.3 (4)   | C24—C19—Sn1   | 126.8 (10) |
| C4—C5—C6    | 120.5 (4)   | C24'—C19—Sn1  | 116.2 (13) |
| C4—C5—H5    | 119.7       | C20'—C19—Sn1  | 117.4 (15) |
| С6—С5—Н5    | 119.7       | C19—C20—C21   | 125 (2)    |
| C5—C6—C1    | 119.2 (4)   | С19—С20—Н20   | 117.3      |
| C5—C6—C7    | 117.7 (4)   | C21—C20—H20   | 117.3      |

| C1—C6—C7      | 122.9 (4) | C22—C21—C20    | 117 (3)    |
|---------------|-----------|----------------|------------|
| N1—C7—C6      | 126.4 (4) | C22—C21—H21    | 121.3      |
| N1—C7—H7      | 116.8     | C20—C21—H21    | 121.3      |
| С6—С7—Н7      | 116.8     | C23—C22—C21    | 119 (3)    |
| N1—C8—C9      | 108.8 (4) | C23—C22—H22    | 120.4      |
| N1-C8-C10     | 108.1 (4) | C21—C22—H22    | 120.4      |
| C9—C8—C10     | 113.6 (4) | C22—C23—C24    | 121 (2)    |
| N1—C8—H8      | 108.8     | С22—С23—Н23    | 119.3      |
| С9—С8—Н8      | 108.8     | C24—C23—H23    | 119.3      |
| С10—С8—Н8     | 108.8     | C23—C24—C19    | 121.7 (18) |
| O3—C9—O2      | 124.7 (5) | C23—C24—H24    | 119.2      |
| O3—C9—C8      | 118.7 (5) | C19—C24—H24    | 119.2      |
| O2—C9—C8      | 116.6 (5) | C21'—C20'—C19  | 114 (3)    |
| C11—C10—C12   | 111.9 (5) | C21'—C20'—H20' | 122.8      |
| C11—C10—C8    | 112.6 (4) | C19—C20'—H20'  | 122.8      |
| C12—C10—C8    | 110.7 (4) | C22'—C21'—C20' | 120 (4)    |
| C11-C10-H10   | 107.1     | C22'—C21'—H21' | 120.0      |
| С12—С10—Н10   | 107.1     | C20'—C21'—H21' | 120.0      |
| C8-C10-H10    | 107.1     | C23'—C22'—C21' | 125 (4)    |
| C10-C11-H11A  | 109.5     | C23'—C22'—H22' | 117.7      |
| C10-C11-H11B  | 109.5     | C21'—C22'—H22' | 117.7      |
| H11A—C11—H11B | 109.5     | C22'—C23'—C24' | 116 (3)    |
| C10-C11-H11C  | 109.5     | C22'—C23'—H23' | 121.8      |
| H11A-C11-H11C | 109.5     | C24'—C23'—H23' | 121.8      |
| H11B—C11—H11C | 109.5     | C23'—C24'—C19  | 118 (2)    |
| C10-C12-H12A  | 109.5     | C23'—C24'—H24' | 121.1      |
| C10-C12-H12B  | 109.5     | C19—C24'—H24'  | 121.1      |
| H12A—C12—H12B | 109.5     |                |            |



